
.. .

.

Interferometer Software Development at JPL: Using Software
Engineering to Reduce Integration Headaches

Michael D. Decka, Braden E. Hinesb

‘Cleanroom Software Engineering, Inc., 7526 Spring Dr. Boulder, CO 80303

bJet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena CA 91109
‘~cJi&%:* g--M-’e-e 0+ Z&kyy x

ABSTRACT

This paper describes some of the software engineering practices that are being used by the Realtime Interferometer Control
Systems Testbed (RICST) project at JPL to address integration and integratability issues. New documentation and review
techniques based on formal methods permit early identification of potential interfaee problems. An inc~mental life cycle
improves the manageability of the software development process. A “Cleanroom mindset” reduees the number of defects that
have to be removql during integration and test. And team ownership of work products permits the project to grow while
providing a variety of opportufiities to team members. This paper pfisents data, itiluding software metrics and atilysis, from
the fh’st sevend incremental deliveries developed by the RICST pmjeet.

Keywords: interfemmet~, integration, software, software engineering, instmmentation, Cleanroom

1 INTRODUCTION

Software is arguably the most critical system in any modem scientific instrument. Software provides the glue that links other
systems to the observer, Without attention to software engineming as a criticat spacecraft technology, system integration
problems can lead to mission delays and even fait&x. .6
The Realtime Interferometer Control Systems Testbed (RICST) project is part o$e lnterferometry Technology Pmgmm at ~
JPL. RICST is developing an integrated hardwan#software testbed that will be used by several projects including SIM, DS3,
GSU CHARA, and the Keck interfemmete’r. A significant pat of the RICST effort is to provide embedded software in a
multiprocessor architectu~ for active conirol of optical devices, Because it is supporting so many different missions, the
RICST design objectives give great weight to flexibility and extensibility. At the same time, the search for cost-effeetive
solutions places a premium on reusability and reliability.

An interferometer requires tight coupling between various subsystems. Their optics, electronics, computer systems, and
software must be architected and designed as one system. The complexity of the instrument is such that system integration is
a major issue; this is where the engineering success of an instrument is made or lost. Opto-mechanical and electronic
complexity make it desirable to place as much of the complexity of the instmment as possible inside the computer system, in
the software, thus allowing potential software solutions to diftlcult optical or electronic integration issues. This software
includes computer-controlled servos and controllers as well as traditional sequencing, data processing, and decision logic.
For example, NASA’s ~round-based Palomar Testbed Interferometer, PT11’2was developed using a similar technology base,
as we~ earlier systems . PTI is a complex automated system with five major opto-mechanical subsystems, including +55
sensors, -18 actuators, high-bandwidth (up to 2000 Hz) computer servo control, nine 680X0 proeessor$ 5 VME cardcages,
and -1OOK lines of C/C++ code. The PTI development was very successful and multed in numerous softwa~ architecture
innovations. -

.

RICST’S goals include the development of generic interferometer functionality that meets the needs of all its many
custome~’ needs, including full automated observatory rind control functionality fo~ a variety of. missions and ground
instruments. In the process, RICST will atlow JIZ’s experience with ground-based interferome~ to be applied to flight and
other ground projects, training new staff who can then disseminate this experience to many projects.

A seco@ RICST goal is to perform end-to-end testing and integmtion of ~rototype flight hardware with ,the instmment
softwa~, providing feedback to the flight hardware development effort on component performance in an integrated
envirolunent, ‘

M,D.D. email: deckm@cleansoft.tom; www.cleansoft.condcleansoft; (303) 494-3152,
B.E.H. email: Braden.E.Hines@ pl.nasa.gov; huey.jpl.nasa.gov; (838) 354-2465

..

The RICST effort also offers an opportunity to prototype processes that can eventually be used on other projects of similar
complexity.

This paper describes RICST use of certain software engineering practices to reduce integration problems. The results
presented reflect the first few incremental deliveries and span a time frame of approximately 18 months. These results
suggest that advanced software engineering practices can improve the effectiveness of flight softwa~ projects by helping to
mitigate integmtion risk. A p~liminmy report of results, detailing the early phases of technology transfer, was published in
February 19975.

2 “CLEANROOM” SOFTWARE ENGINEERING SUMMARY

In the early 1980’s, Dr. Harlan Mills of IBM’s Federal Systems DivisionGJ’observed the quality gap between the hardware
and software components of a system and proposed that software developm adopt the successful practices of precision
manufacturing, Specitlcally, he suggested a “Cleanroom” approach to softwa~ engineering based on two guiding principles:

+ Design Principle. Programming teams can and should strive to produce systems that are nearly error-ftee upon en@ to
testing.

+ Testing Principle. The primaV purpose of testing is to measure thequality of the developed softwate product, and not
to “test quality in.”*

Most of the software engineering practices adopted by RICST are guided by the Cleanmom software engineering approach.
These practices have been further tailored by the RICST team assisted by Cleanroom experts using experience with
numerous Clermroomprojects9’10’11’12.The practices adopted by the RICST team include the following:

+ An inc~mental life-cycle model delivem end-to-end testable subsets of user functionality over time.

+ Hierarchical specification and design using the “box structures” approach is combined with object-orientation using the
Untied Modeling Language13.

+ Team reviews informally apply techniques of functional correctness veritlcation result in designs that are nearly error-
free before any testing begins.

RICST is depending on the Cleanroom process to deliver software for hardware components that will not be available
through much of the development process. A process like Cleanroom, which does not rely on exhaustive testing to deliver
quality, offers the best chance for success in such an environment,

3 METHODOLOGY PHASING

The RICST team used a phased approach to initial adoption of the Cleanroom practices, It was similar but not identical to
that of Hausler, et al. *4.The p@sed approach introduces the methodology practices over time. Afier the initi-d phases, the
team was awme enough of the methodology goals, ahd was contident enough in their ability to perfohn in the methodology,
that they could actively contribute to subsequent tailoring. “

. .

The phased introduction had several steps. First, the project conducted a risk assessment in which it identified key risks to
project success. Next, it rank-ordered several competing project goals such as meeting schedule commitments, meeting
performance requirements, and designing for maintainability. A phase plan was developed out of the risk assessment and
goals prioritization. It defined four phases of technology introduction.

1. Introduce the Cieanroom management techniques of incremental development and team review. This initial phase
will precede full-scale work on the project development and is intended to help dine external commitments.

2. Make the team comfortable with the Cleanroom process through the successful completion of one increment using a
subset of Cleanroom practices.

3. Introduce any additional formal techniques needed for spccitlcation, verification.

4. Complete-the project using specialty tectilques developed for this project.

4 INCREMENTAL DEVELOPMENT

Cleanroom uses an inmmental life-cycle mode19in which multiple deliveries occur during the course of the project, RICST
adds another level to this model, breaking deliveries into multiple internal increments. Each inc~ment provides a subset of

.-

the final system functionality that can be tested in an environment membling the final system environment, Increments
accumulate to form deliveries that ate subject to full customer assurance testing. The first four deliveries are showu together
with approximate allocation to development phases, in Figure 1 below.

Increment 1

‘ ~ Increment 2

Increment 3a

Specification

m Design

m Integration& Subsystem Test

Increment 3a

Inc$ement 3a

f
- Increment 4a

Increment 4b

A

Delivery 1
12/96

Figure 1. RICST Deliveries

I Delivery 3
9/97 I— ..

Delivery 2
7/97

and Increments

Delivety 4
2/98

Traditioml topdown incremental developments recommends that requirements analysis and specification be complete
before incremental design and coding begins. The RICST team, aware of their environment of changing requirements, opted
instead to do some requirements and specification work up-front, but to improve and extend the requirements and
specitlcation documents significantly withi-neach increment. -

4.1 Increment Plan

Table 1 summarkm the content of deliveries through Februa~, 1998.

Table 1. Deliveries

Delivered Lines C++ Code Focus Technical Challenges

1 12/96 -6000 optical delay line: zero-velocity realtime periodic task scheduler, multi-
tracking CPU Coordination shred memory

management; hardware interfaces

2 7197 -14000 full delay line functionality object-oriented architecture of hardware
interfaces; graphical user interface; dither
calibration

3 9/97 -17000 fringe-tracker hardwate integmtion hardware-software codevelopment

4 2/98 -27000 white-light fringe tmcking realtime coordination between fringe
tracker and delay line to form phasing
subsystem

4.2 Inter-Increment Activities

Significant effoti takes place between inc~ments. First, the results of the previous inc~ment(s) am assessed and process
impmvementa are considered. RICST uses the Defect Pnxention Process (DPP)l c to determine the root cause of key defects
and to analyze potential process changes that could have prevented it.

We also consider each new increment to be just like the beginning of a new project: there is a sigtilcant body of existing
work to build ou an end set of requirements in mind, a target delive~ date, and an increment plan to meet it. Re-planning is a
frequent activity between increments, as we account for changes to requirements and/or environment that occurred during the
previous increment.

The incremental development process meshes well with RICST’S customers? needs, as several of the customem ate
themselves sophisticated interferometer testbeds whose goals are to deliver functionality that increases with time.

4.3 Benefits of the Incremental Model

The iwemental model has enabled early resolution of several kinds of problems faced by RICST. By getting early
experience on the actual hardwa~, the project team was able to correct several deficiencies in their initial architechue for
hardwrm drivers and for shared memory management. At the same time, the team validated their initial approach to real-time
periodic task scheduling. However, the incremental model is not an excuse for the kind of itemtive pmtotyping that produces
code which is unsuitable for flight, Instead, each increment focuses on a key project risk area but the code that is developed is
done to meet demanding reliability and maintainability standards.

5 DEVELOPMENT ACTIVITIES

RICST used most of the spccitlcation, design, and review techniques that are considered part of the “typical” Cleanroom
canon. The box structures method was used for speeitlcation and desigu team iterative reviews stressed both design quality
and correctness, and a form of functional verification was applied throughout, At the same time, the RICST team developed
innovative ways of integmting box structures with object-orientation and the Unif”ed Modeling Language, or UML13.

5.1 Box Structures

Box struchues is an approach to system spccitlcation developed by Dr. Harlan Mills and his colleagues17’18.There is a close
link between box structures and object-orientation19. In box structures there a~ tluee views of any systen~ component,
objee~ or part. The black box, or “specitlcation,” view describes the entity’s behavior in terms of events that the system can
respond to and the visible behavior that ensues. When the black box behavior depends on the entity’s retained data, an
abstract model can be used. The black box formalism is supported by functional semantics20and model-based abstraction21.

The state box, or “design,” view of an entity describes concrete data implementation structunx, but hides processing through
the functional abstmction. The “concrete” data stmctures at this level are themselves instances of lower-level black box data
specifications22.The state box view closely resembles state machines21.

A thhd view, called the clear box or “implementation,” describes algorithms or processing. This view defines lower-level
process specitlcations that are themselves functional abstractions with a conesponding black box view. The clear box
approach incorporates the theory of stmctured programming23.

Each level of this decomposition hierarchy reveals new black boxes. Each of them may have a separate speciticatio~ desig~
and implementation. Because this hierarchy is self-similar at every level down to code, the same techniques am learned once
and applied throughout development. However, even though all three views may exist at every level, the team may choose
not to document eve~ view individually. -

The following sections describe the levels of engineering documentation produced by the RICST developers.

5.2 The System Black Box Specification

The first decision in system specification is the choice of a black box bounda~: what is “inside” the black bo~ and what is
“outside?” The RICST team chose to place the entire integmted hardwadsoftwarc system inside the box. Thus the stimuli to
the system ate user commands and sequences as well as unscheduled events such as laser-beam intermptions (e.g., due to
dust) and the reception of science inputs (e.g., starlight). Although the definition of system behavior is extraordinarily
diftlcu]t with this boundruy, it was valuable to take this view as it kept the user of the system in mind, rather than describing EZ
operations in terms of the engineer’s view.

The team chose to specify the system in terms of an abstract data model that included “hard elements such as “current
optical delay line position” as well as “soft” ones like “science data output btier.” The RICST team found this abstract
model to be the most useful both for understanding the system’s behavior and for validating that behavior against evolving
requirements<

The specification consists primarily of 4-column tables, with one column each for a description of

+ a unique event received by the systew including parameter values if appropriate

+ a condition on the state of the abstract model that determines a unique response

+ an observable behavior

+ a change, if any, to the state of the abstract model

5.3 The System Architecture

The system design evolved as a hierarchy of box structures. First a distinction was made between RICST (which included
ground control, teleme~, the space vehicle, and the interferometer) and the RICST Instrument (the interferometer alone). A
further distinction was made between the instrument and the real-time computer (RTC). Finally, the RTC was decomposed
into functional components like the delay line and the star tracker. Most of the functional components ruv bound to
optomechanical devices but some (like the instrument command and data system) me pure computing artifacts. The system
architectwe document describes interfaces at the RICST level, the instrument level, and the component level. At present, the
team is using inspection and discussion to veri& that the arc~tecture meets the ~lack box specification. A futwe goal is to
bring formal methods (see below) to bear on this problem-as well.

5.4 RTC Component Documents

Each of the RTC components has its own document containing component-spccitlc design requirements, the black box
specification of the component, and the design of the component as a collection of C++ classes. These documents contain a
combination of graphical models (using the Unified Modeling Language), textual descriptions and motivation, and formal
notations.

The need to write detailed specitlcations for each component, subcomponen~ and module forced each team member to
carefully examine the behavioral characteristics of each part. As a result interface designs and requirements assumptions
we~ given much more scrutiny that they would have mceivcd in a typical similar project.

5.s Class Specification & Design

By the time that design decomposition reached the level of C++ objects and classes, the specifications moved from
documents to comment text embedded within C++ files. The same underlying formal model still applied, but diffe~nt
notations were used.

The team followed a simple rule: eve~ method of every object was required to have a black box specification defined by its
author. Every user of a method could then copy that specitlcation irdine as “the intended behavior of the method invocation.
That user could then apply function abstraction techniques (after Linger, et al.x) to state th$ net effect of a sequence of
function calls.

The team used.a combimtion of styles in arriving at black box speeitlcations. One style was top-down: the author wrote an
intended behavior firsg then the ‘design or implem~ntation of that behavior, and then compa~d the two for correctness, A
second approach was to write the design or implementation first, using a mental specit3cation, then derive the net effect and
use that as specification.

l%e~ wete several interesting discoveries that arose out of this design and specification process. The first was the ability to
obsewe and document a huge number of potential failure modes that were not immediately obvious on initial investigation.
For example, when a function receives a pointer as an argument, one potential source of failu~ is that the pointer is invalid

E!
(e~tier null or-’’wild”). By writing fonhal specifi~ations for each
function, the user of that function is presented with a black box
behavior such as shown in Figure 2 which ~ads, “if pDataObj is
invalid, the results of this function am undefined; otherwise set the

Figure 2. Black Box Behavior Example object pointed to by pDataObj to new_value.” It is then up to the user
to decide whether this is acceptable or not.

All together, describing all the undefined and “error” cases accounted for perhaps as much as 70% of the method
implementation effort. While this may seem extreme – only spending 30’%0of the time on “nominal” cases – we find that
programmed are natundly p@ty good at getting the nominal case right. It’s the abnormal or unusual cases that lead to
catastrophic system failures.

5.6 Applications to Hardware

During the verification process, we discovered that a similar sort of anrdysis and documentation process can be applied to
hardware/software interfaces. For example, in order for driver dt1401 to perform in its nominal case, the DT1401 card must
be connected to a source of timing pulses. We could document this assumption as shown in Figutt 3.

Figure 3. Hardware Interface Black Box

+ DT1401 input “B” connected to output of TimingSource

+ TimingSoume running

+ Synchronizer output connected to input of TimingSource

+ Synchronizer running

+ Synchronizer trigger input connected to GPS receiver

Further, the timing source must have the right
synchronization signals. The synchronization signals must
be triggeted by the GPS receiver, which in turn must be on
and opetating within specified parametm. All of these
connections can be documented using the same functional
approach, The result of this chain of analysis leads to a
statement documented in the system spedlcation under the
heading“Hardwme Setup” as follows:

+ GPS receiver “on” and one of trigger outputs connected to trigger input of Synchronizer

In this way the hardwate setup can be “verifkd” in a fashion similar to the way functional progmm correctness is veritled.

Using functional techniques, a set of precise hardware interface specifications is being developed that will limit risks
resulting from the simultaneous engineering of hardwate and software.

5.7 Tools and “CleanSpec”

One of the most useful outcomes of having a formal specitlcation for eve~ method or procedure is that a user of the
procedure can quickly see what it does without wonying about how it does it. In fact, if one makes a copy of the procedure’s

void procedure_a (int x) {

/’ copy of specification of procedue_b ‘/
procetie_b (x, y);

/’ COPY of Specif kation of procedure_c ‘/
proceciwe_c (y, z);

}

Figure 4. Use of Inline Specification

specitlcation on top of every use of that procedure in
the code, it is possible to summari7E large amounts of
code in a few pages.

Unfofiunately, the team very quickly discovered that
copying and maintaining these inline specifications
was extremely time-consuming and burdensome. So a
tool was developed that would automatically expnd
and update specifications as needed. The developer of
a procedure now writes the specitlcatiom using
special keywotis and tags, within a comment in the
C++ header file, The user of the procedure places a
special comment on ‘top ‘of any call to the procahue,
describing mrametem to be substituted and selecting

formatting options. The tool exTands the specification and produces a listing tha~i~ used in the iterative review process. -

5.8 Team Iterative Review

Each artifact of development is subjected to an iterative review process by the team. The system black box specification and
system amhitecture are reviewed by a “lead” team consisting of project architects and senior engineers. Each component
document is reviewed by the team of 3-5 engineem that owns the component plus engineers representing the components

—

that use i$. Component implementations are reviewed using verification-based inspection24 by 2-3 people other than the
developer. Code was compiled by the developer before the final implementation review.

6 TESTING& RESULTS

6.1 Testing Practices

Cleanroomemphasizes the use of statistical (sometimes called “stochastic”) black box testing based on opemtional profiles2s.
The emphasis of this testing is the measu~ment of reliability, rather than the coverage of progmm structures. This is
essentially Monte-Carlo testing of the software, with the added twist that we use our knowledge of how the system will be
used to make better choices of test cases by selecting input sets (sequences of stimuli) that are statistically representative of
actual usage. It offers a clean separation between the development and testing activities and reduces the number of common-
mode failures that might arise.

To date, the RICST team has chosen (primarily due to resource limitations) to use traditional forms of testing imluding
functional covemge testing, mther than statistical testing. Private, ad hoc “unit” testing by developers is specifically
prohibited on the RICST project. Although it cannot be physically prevented, it is diftlcult in most cases because of the
realtime, interdependent nature of the system. The results to date show that the rwiew process delivers better and more
diable code, more cost-effectively. More importantly, the prohibition against developer “unit” testing enforces a strict
adherence to team ~view techniques.

6.2 Results

The data from RICST testing, some of which are shown in Table 2, are somewhat difllcult to analyze. When taken in
aggregate, the number of defects found in testing is higher than would be expected from the process used. There are several
reasons why this may be so. Because of the way we defined the system black box to contain hardwa~ as well as software,
many hardware and contlgmation errors appear in these numbers, We also must account for the high rate of staff growth and
the complexity of the project.

5
The total defect rate also includ~ “defects” associated with the team’s lack of familiarity with the support tools including
compilers, operating systems, and makefiles. It also includes several defects in the operating environment itself. For example,
the realtime operating system takes 600 ~sec to switch contexts when certain communications tasks are running. Diagnosing
such problems is invariably costly, though repairs were relatively simple.

Finally, we have observed a strong correlation between the gmnting of a waiver from rigorous review and the detection of
significant defect counts.

Table 2. Embedded System Defects

B

Delivered Lines C++ Code in New Defects Cumulative Cumulative Defects
Embedded System Discovered Defects per 1000 LOC

1 12/96 -6000 34 34 6

2 7197 -8000 69 103 13

3 9197 -13000 46 149 11

4 2/98 -16000 73 222 14

4’

Only defect mtes for the embedded system code are reported, as those a~ the only defects that RICST tracks and monitors.
The GUI code is considered to have lower reliability requirements and is not subject to defect tracking at present.

Defects are not tracked to the increment of code in which they may have appeared, so it is impossible to say at this point
whether a defect discove~d during testing of delive~ #2 appeared in new code or was undetected in increment 1 testing.

The objective metrics from increment 1 are only part of the story. We also believe that

*Although the team’s agreed-upon process mandates certain reviews, it is possible for a waiver to be granted by management.

The code is smaller, in terms of the number of statements, than would have been expected from non-Cleanmom wok, by
20% or more. This is based on comparisons with ve~ similar functionality contained in the Palomar Testbed
Interferometer. We hope to do head-to-head comparisons with a similar JPL project in the next increment,

The team ~views helped all team members understand the architecture and interfaces better than they would have in a
typical JPL project. The team also has more flexibility to meet other external demands on members’ time because of that
distributed knowledge.

Team reviews have also proved invaluable as a means of disseminating domain-specific knowledge, which is
concentrated in a few key individuals, to the rest of the team. This helped RICST meet its goal of developing additional
interferometer software/integration experts.

The likelihood of having few defects in any given class appears to be strongly correlated to the emphasis placed on that
module’s specitlcation and review.

The design is simpler, more robust, more modular, and will be easier to adapt to changing requirements, than it normally
would be. Frequently, in the process of verification the additional conceptualization and nmsoning performed by the
developer or the team revealed simplifications and improvements to what had previously been conceived.

When the review process was followed, no defects were introduced through the correction of a fault after testing began.

Hardware/software integration issues am better understood than ever before, and the cost of diagnosing such issues
during testing is expected to be significantly less than for similar projects.

The team is enthusiastic about the process.

We are in the process of improving the process documentation, tightening up process controls, and implementing new
metrics in an effort to discover how defect densities maybe fufiher reduced and what factors influence defect density.

7 LESSONS LEARNED

One of the lessons learned from the first four RICST increments is the importance of a standardized, documented process that
clearly describes the spccificatiow design, and verification techniques. The distribution of defects is ve~ suggestive of
uneven application: those modules that were subjected to the closest review scrutiny by the most senior team members had
far fewer defects.

Experienced and savvy developera must “buy-in” to the idea of a Cleanroom process. While senior developm may be biased
against a process that eschews unit testing, their domain experience is crucial. In fact, the desire to do good box stmctures
design often drives the architecture, and a seasoned softww amhitect is needed to develop a framework that will both meet
project needs and is amenable to Cleanroom verification.

Careful management control over team activities is important while methodology learning is taking place. Attributes of this
control include the frequency and stmctu~ of reviews, the balance between perfection and adequacy, and judgments as to
functionality that could be deferred to other increments. After a first successful increment, the team members can be relied on
to make many of the right decisions, but the first increment is critical. Further, we obsewed that, as people came closer to
what felt like “coding,” they showed some inclination to lapse into the bad old habits of ad-hoc testing and debugging rather
than formal specitlcation and team reviews. Making this difficult period as shoti as possible is one important factor in
increment scheduling. It is no longer possible to physically pxevent ad-hoc unit testing.JHowever, every possible
management technique, including peer pressure, must be used to discourage it in favor of the more cost-effective Cleanroom
techniques.

In any project whae safety is critical or even where failures are very costly, it is probably necessmy to conduct some amount
of supplemental testing in addition to statistical testing. Thorough statistical testing is veV effective at measuring reliability,
but it can miss defects that are unlikely to occur. The combination of statistical and later formal covemge testing addresses
these concerns.

The RICST project demonstrates the ability of Cleanroom softwate engineering to meet the challenges of a hard real-time
multiprocessing environment where reliability demands are high. Discussion with members of other JPL project teams
suggests that RICST quality and productivity are well within norms for similar projects, and may even be somewhat better.

. \

The project described in this paper is supported in part by government contract no. NAS 7-1260. ‘

9 REFERENCES

1. M. Shao and M.M. Colavita, “Potential of long-baseline infnued interferomet~ for narrow-angle astromet~; Astronomy

andAstrophysics 262, 353-358, 1992.

2. M.M, Colavi@ M. Shao, B.E. Hines, J.K. Wallace, Y. Gursel, C.A. BeichmaL X,P. ParL T. NakajimA and S.R. Kulkarni,
“ASEPS41 Testbed Interferometer,” Proc. SPIE: Amplitude andlntensity Spatial InterferometryII 2200,89-97, 1994.

3. M. Shao, M.M. Colavita, B.E. Hines, D.H. Staelin, D.J. Hutter, K.J. Johnston D. Mozurkewick R.S. SimoU J.L. Hershey,
J.A. Hughes, and G.H, Kaplm “The Ma* III Stellar Interferometer,” Astronomy ana!htrophysics, 193, pp. 357-371, 1988.

4. B. Hines, “AS13PS-OTestbed Interferometer Control System,” Proc. SPIE: Amplitude and Intensity Spatial lnterferometiy

]~ 2200, pp. 98-109, 1994.

5. M. Deck and B. E. Hines, “Cleanroom software engineering for flight systems: a preliminruy qxxt,” IEEE Aerospace

Conference, Febmary, 1997.

6. M. Dyer and H.D. Mills, “The Cleanroom Approach to Reliable Softww Development” Proc. Validation Methods

Research for Fault-Tolerant Avionics and Control Systems Sub- Working-Group Meeting: Production of Reliable F/ight-

Crucial Sojlware, November, 1981.

7. H.D. Mills, M, Dyer, and R.C. Linger, “Cleanroom Software Engineering,” IEEE Sof?ware, pp. 19-25, September, 1987.

8. M.D. Deck, “Cleanmom Software Engineering: Quality Improvement and Cost Reduction; Proc, Pacific Northwest

Soflware Quality Conference, October, 1994.

9. R.C. Linger, “Cleanroom Process Model,” IEEE SofMare, pp. 50-58, March, 1994.

10. M.D. Deck, “Cleanroom Software Engineering: Quality Improvement and Cost ReductioU” Proc. Pac/fic Northwest

Sojlware QuaIi@ Conference, October, 1994.

11. S. Wayne Sherer, Ara Kouchakdjian, and Paul G. Arnold, “Experience Using Cleanroom Software Engineering; IEEE

Sojlware, pp. 69-76, May, 1996.

12, V.I. Basili, M. Zelkowitz, F. McGarry, G. Page, S. Waligora, and R. Pajerski, “SEL’s Software Process-Improvement

Program: IEEE &jhvare, pp. 83-87, November, 1995.

13. H-E. Eriksson and M, Penker, UML Toolkit, Wiley, 1998,

14. P.A. Hausler, R,C, Linger, and C.J. Trammell, “Adopting Cleanroom Software Engineering with a Phased Approach~

IBh4SystemsJournal, 33(l), pp. 89-109, Janua~, 1994.

15. R.C. Linger, and A.R. Hevner, “The Incremental Development Process in Cleanroom Software Engineering,” Proc.
Worlwhop on information Technologies and Systems (WITS-93), December, 1993.

16. R.G. Mays, C.L. Jones, and G.J. Holloway, “Experiences with Defeet Prevention” IBM Systems Journal, 29(l), January,
1990.

17. H.D. Mills, R.C. Linger, and A.R, Hevner, Principles oflnformation Systems Analysis and Design, Academic Press,

1985.

18. M.D. Deck, Mark G. Pleszkoc~ R.C. Linger, and H,D. Mills, “Extended Semantics for Box Structures; Proc. 25th

Hawaii International Conference on System Sciences, January, 1992.

19. M.D. Deck, “Cleanroom and Objeet-Onented Software Engineering: A Unique Synegy: So~are Technolo~

Conference, April, 1996.

20. H.D. Mills, “The New Math of Computer Progmnrning,” Communications of the ACM, 18(1), pp. 43-48, Januruy, 1975.

21. K, S. Shankar, “Data Structures, Types, and Abstractions,” IEEE Computer, pp. 67-77, April, 1980.

22. M.D. Deck, “Data Abstraction in the Box Structures Approach” Proc. 3rd international Conference on Cleanroom

Soj?ware Engineering Practices, October, 1996.

23. R,C. Linger, H.D. Mills, and B.I. Witt, Structured Programming: Theory and Practice, Reading, MA: Addison-Wesley,

1979.

24. M, Dyer, The Cleanroom Approach to Quality Software Development, Wiley, 1992.

25. J.D. Muss, “Operational Profiles in Software-Reliability Engineering: IEEE Sk@vare, pp. 14-32, Mamk 1993.

